SN-501(502)

Technical Note: SN-501

SEMB8IEN

SHSTEMS. [FE.

An Introduction to S*'IMEBI0OM " The Language

The SY'MBION™ language has been
developed to provide a highly efficient,
common interface for communicating with,
networking, and controlling a wide range of
analytical and other instruments. Its syntax
is simple to use yet exhaustive, covering all
of the significant capabilities required for
instrument and sample system control, data
analysis, /0O, database storage, and
networking.

BENEFITS:

» One syntax for the control of all
instruments

» One database for all measurement
data (both spectral and time-
dependent)

» One database for all instructions and
administrative information.

» Easy extensibility

» Easy portability of configurations and
data

> Ease of instrument and data
validation

» A direct path to regulatory compliance

1. Introduction

The Symbion language is specifically
tailored to provide a standard set of
commands for the control of all portions of
the analytical system while providing
external interfaces to the next tier of data
and control systems. The general
arrangement is shown in Figure 1. Each
command, C1 through C5, indicated in the
figure is an object with predefined
functionality that allows for interfacing with
local and remote 1/O, external chemometric
software packages, analytical instruments,
and internal and remote databases. The
input and output arrangements allow for
transparent interconnection of disparate
sub-systems. This approach provides a
powerful yet straightforward means for
designing complex operating configurations
and for linking existing programs into
coherent units to meet evolving needs. In
addition to the many instrumentation-specific
commands developed for Symbion, the user
can take advantage of extensive sets of
readily available third-party commands.

The Symbion language underlies
SYMBION-0X™, a suite of programs for
process development and on-line process
control. (See Brochure PS:SDX-01.) This
suite features a set of four main operating
windows (programs) complete with pop-up
windows and pull-down menus to facilitate
most aspects of instrument operation and
database management. The scripting
capability is accessed through the Setup
window that serves as the configuration
builder.

Page 1 of 6

This window features separate areas for
initialization and run-time scripting, as well
as a set of tools for use in composing,
testing, and debugging script. It also

provides an interface to the Symbion
console, providing direct interaction with the
Symbion interpreter.

Pl, SAP R/3 Plant DCS
A
¢ C5 I
| v :
: i C4 Remote '
: DB < > Symb|0n < » /0 :
: A A A |
: C1 C2 C3 |
' A 4 A 4 A 4 !
| Instrument Chemo- Local |, i
| metrics 1/0 <+ Sample '
! System !

Complete Analytical System

Figure 1 — Typical Data and Control Flow for SY'MBION™ Software

2. General Characteristics

The Symbion language is characterized by a
simple yet powerful command syntax that
translates the typical control objects into a
standard set of hierarchically organized
commands, allowing transparent control and
fluid transport of data from one object to the
next. The specific code related to the
function of a given object is contained within
that object, allowing the high level script to
remain general and modular. The resultis a
high level of efficiency, economy, and
transparency.

Symbion commands form a superset of the
Tcl command set. As a result, Symbion
commands can be augmented by the entire
set of Tcl commands (www.scriptics.com). In
addition, the Tcl extension architecture
makes it possible for the user to build Visual
Basic applications, C-code, or batch files
and embed them seamlessly into Symbion.
Furthermore, Symbion’s specific extension
architecture provides a convenient and
standard method for running user defined

instruments and I/O devices from Symbion
commands. Substitution of a new device in a
Symbion command will externally call a
user’s program that contains the specific
instructions for that device without affecting
the other committed tasks inherent in the
Symbion command.

Among the important characteristics of the
Symbion language are a set of commands
that standardize the functions and the input
and output relationships between analytical
instruments, analysis applications and
industry standard I/O systems. Symbion
converts these instruments, analysis
applications and 1/O systems into “black-box’
objects that have pre-defined function, input,
and output arrangements. The result is rapid
application development.

Symbion’s embedding capability allows a
wide range of existing code to be
incorporated into Symbion commands. As a
result, other scripting software packages can
be run within Symbion, adding their
capabilities to those of Symbion itself.

Page 2 of 6

An additional benefit of the embedding
capability is the security and tracking that it
provides. When Symbion is operated with
its Security Guard™ features enabled, any
code embedded within the Symbion
commands will share the security and
traceability inherent in Symbion, even if the
embedded code addresses a program that
is not in itself secure. An example of this is
given in Section 5.

3. Symbion Variable Format

In Symbion, instrument outputs and other
data are transferred from one Symbion
command to another as a structured format.
Such “structures” comprise both numerical
data and attribute information. For example,
in the command

set x1 [Controlinstrument Bruker Absorbance 16 None |,

the variable x1 references the name of the
structure in which all of the numerical data
and attribute information reside. Contained
within the structure x1 are numerous
objects, each associated with a particular
associated datum or attribute. For instance,
the data block xvar contained within x1
holds all of the x-axis data returned from the
instrument. Similarly, the attribute block,
ylabel, contained within x1 includes the y-
axis label attribute returned from the
instrument. A complete list of the data and
attribute objects in the Symbion
Programmers’ Guide.

4. Symbion Syntax

The general syntactical format for a
Symbion command is as follows:

set x1 [Command argl arg?2 ...]

where Command = the Symbion command,
argl = first input argument, arg2 = second
input argument, and so forth, x1 is the
variable name of output data. In the
Symbion language, any expression wrapped

by [...] braces are evaluated by the
interpreter and the result returned. The set
command in Symbion works like an equals
sign “=*. So, in the example command, the
output of Command is placed in the variable
x1. All Symbion commands return the name
of a structure rather than actual data. Thus,
the variable x1 is the name of the structure
which contains the output from Command.
Constructed in this way, any number of
outputs can be placed into a single structure
name and passed along to the input of
another Symbion command. Many Symbion
commands require an input in the form of a
structure from a previous Symbion
command. Thus, the output of one Symbion
commands can drive the inputs to
subsequent Symbion commands.

5. Examples of Symbion Commands

Example 1:

In the following example, the output of a
single Symbion command is connected to
the inputs of two other Symbion commands.
In this example data collected from a Bruker
instrument is transferred to two different
predictors: MATLAB and PLS/IQ, as shown
in Figure 2.

The actual script that would make these
connections is as follows:

set x1 [Controllnstrument Bruker Absorbance 16 None]
set x2 [RunPrediction PLSIQ C:/Symbion/my.cal} $x1 0]
SendAnalysisData MATLAB spec $x1
SendAnalysisCommand MATLAB {

y = spec(500);

set x3 [GetAnalysisData MATLAB y]

The first line instructs Symbion to command
the Bruker instrument to take a 16-scan
Absorbance. The data and other attribute
from the sample collection using the Bruker
spectrometer are placed into the structure
referenced by the variable x1.

Page 3 of 6

Bruker
Spectrometer

A 4

MATLAB ——> X2

x1

A 4

PLSIQ | —» y3

Figure 2 — Interconnection of Symbion Commands via Structures

To make use of the structure in other
Symbion commands, the “$” character must
be placed in front of the variable x1, as in
the second line. The second input argument
of the RunPrediction command is the
unknown spectral data to regress upon.
Since the name of the structure is contained
in the variable x1, a “$” is necessary to
reference the actual name of the structure.
In the third line, the data from the variable x1
is again used to transfer Symbion data from
the Symbion variable x1 to the MATLAB
variable spec. Again, the third input
argument of the SendAnalysisData
command requires the name of the structure
containing the spectral data, which is $x1
and not x1 itself.

Once the data has been collected by the
Bruker spectrometer and the resulting data
is contained in the structure x1. The data
can be passed to as many other Symbion
commands as desired. The variable x1
forms an internal “Bus” for data (See
Security Guard Architecture Reference). In
the case of the PLS/IQ program, the
Symbion driver for the PLS/IQ program
hands the unknown spectral data from x1
and the calibration in C:/Symbion/my.cal to
the PLS/IQ run-time engine for processing.
After the processing is finished, the resulting
data is returned into the structure x2 for
storage, plotting, etc. In a similar fashion,
the data from the x1 structure is sent to the
MATLAB application; however, in this case,
the MATLAB y-data in the variable x1 is
mapped to a variable spec in MATLAB.
Since MATLAB runs its own interpreter and

uses its own scripting language, operations
performed on the newly created MATLAB
variable y are run using the
SendAnalysisCommand. The script inside
the braces is passed to the MATLAB
interpreter for evaluation. Once MATLAB
completes, the following line of Symbion
code is executed to map the result
contained in the MATLAB variable y to the
Symbion variable x3.

Example 2:

The following is an example of Symbion
code that controls two instruments and
sends their respective data to MATLAB for
processing. The embedded MATLAB
command contained within the
“SendAnalysis” command will have the
same traceability and security as the
Symbion code.

set x1 [Controlinstrument Bruker Absorbance 8 None]
set x2 [Controllnstrument Kaiser Sample 8 None]

SendAnalysisData MATLAB bruker_spectrum $x1
SendAnalysisData MATLAB kaiser_spectrum $x2

SendAnalysisCommand MATLAB {
% Trivial Chemometrics for example purposes

peakl = bruker_spectrum(500);
peak2 = kaiser_spectrum(250);
}

set x3 [GetAnalysisData MATLAB peakl]
set x4 [GetAnalysisData MATLAB peak2]

PlotRTTag structure $x3 Peakl Concentration MATLAB
Percent black
PlotRTTag structure $x4 Peak2 Concentration MATLAB
Percent black

Page 4 of 6

Trend
Bruker X1 | X3 | Plot 1
MATLAB
X2 X4
-~ -~ Trend
Kaiser " " Plot 2

Figure 3 — Control of two Spectrometers with Data Processed in MATLAB

The final two blocks of code retrieve the
processed data for display in the appropriate
window.

6. The Programming Environment in
SYmMBION-OX™

The SY'MBION-0OX™ Process Analysis
Suite is controlled from the Setup Window
(See User Manual). The Setup Window
provides overall system control and
debugging of Symbion command scripts.

6.1 Initialization and Run-Time Script
Windows

The main control scripts are located in the
initialization and run-time panes as shown in
Figure 4. The commands contained in the
initialization script are run sequentially from
top to bottom when the initialization button
or pull-down is selected. This script is run at
boot-up if auto-boot has been activated. The
commands contained in the run-time script
are run from top to bottom and then
continuously looped over when the mode is
switched to ONLINE by the mode selector
buttons or pull-downs. By selecting the
OFFLINE mode from either the OFFLINE
buttons or pull-down, an OFFLINE request is
submitted to Symbion. The current run-time
script will run until completion and then
switch to OFFLINE mode.

There are four additional script-related tools
located in Figure 4 that assist in the

programming and debugging of the Symbion
application. These are the composer, setup
graph, setup messages and the console
interface.

6.2. Composer Tool

The composer tool provides a scripting
region separate from the initialization and
run-time scripts for script development and
debugging. The user can write control
scripts into this window without affecting the
main control scripts. A typical set of
Symbion commands would first be
developed in this scripting region and then
run by pulling-down on the run menu option
and then selecting Execute Scripting in
Symbion in order to verify the proper
operation of the code, the syntax, etc..

6.3. Setup Graph

The setup graph pop-up is available to plot
data arising from the command scripts.
Data plotted in this window will not conflict
with any plot in the operational, manual or
historical operations windows. This plotting
region is mainly used as a debugging tool to
view data that would normally be directed to
the operational or run-time window. (See
PlotXY, PlotRTSpec, and PlotRTTag
commands in the command reference).

Page 5 of 6

- Setup @ ZE4220 (Admin) - Database: Symbion@local st

Initialization Run-Time
Script Script
=laix|

Fle View Preferences Mode MWindow Hep

QA6 RE

EEX Q- B
Seii

wpContidls |

/ monm ek
4

Script | lem
p INITIALZE # OpTel Insaler ;I‘ = el Setu
Composer oty ETTETT p
packag: ; bl
~ 0 B Ve Gm 02 | 2 vl 5] Peak] 250 Melric Zeiss ABSDER black, G raph
H g 2 yvall 7| Peak] 440 Metic Zeiss ABSDER biack
HMyIn ngkument | sst x1 [Contiolinstument AnslectEthemet Background & Mone |
U ral 2 1000 380 Svmbion |
- [etup Plot__ A
Tools Do H DEF: blad
:":m: Setup Plot
Anslysis
HE o 015 - Data
ocs :
= | . Setup
2 Messages

/

proc Cont
global nsi_handle myi
if{[irfo esists scans_done] =0} {set scans_done 0}

<

Close
:
ll
A

=l

e Ly o —

[Zeiss [admin (8 [12/04/03 [1358.28

Figure 4 — S¥Y'MBION-0OX™ Setup Window

6.4. Setup Messages

The setup message window displays errors
and messages from the Symbion
commands. General syntactical errors
arising from the command scripts are also
displayed for debugging purposes.

6.5. System Console

In addition to the pop-up windows from
Figure 4, there is a Symbion console, which
provides direct interaction with the Symbion
interpreter.

7. Conclusion

The Symbion language provides a powerful
yet economical set of tools for designing and
operating diverse measurement
configurations involving analytical
instruments and other measurement and
control devices. This document has provided
a brief introduction to some of its
capabilities. For a more detailed description,
please refer to The Symbion Programmers’
Guide, SD-502. For examples of Symbion
implementation, see the SY'MBIOMN-OX™
brochure, PS:SDX-01.

Page 6 of 6

